Novel Superhard Materials and Nanostructured Diamond Composites for Multiple Industrial Applications

Principle Investigator: Yusheng Zhao

Los Alamos National Laboratory

Academic Partners: Texas Christian University State University of New York at Stony Brook

Industrial Partner: Rock Bit International, TX

DOE Industrial Technology Program *Industrial Materials for the Future* June 23-25, 2000, Golden, Colorado

Objective:

Harder, Tougher, Last "Forever"

Superhard & Superabrasive Materials for Industrial Applications such as drilling, cutting, grinding, *etc*.

Approach:

High Energy Ball Milling Preparation for Nanostructure
High Pressure and High Temperature Synthesis/Sintering

Commercialization:

More than a billion dollar markets in the making of drill bits, machinery tools, and energy & environmental savings

Achievements

• Novel BC₂N, BC₄N materials in single ternary phases; second hardest ($H_v = 62 \sim 68$ GPa) after diamonds

- Nanostructured Diamond-SiC Composites with 50% increase in *fracture toughness* ($K_{Ic} \rightarrow 12 \text{ MPa} \cdot \text{m}^{1/2}$)
- B_6O Single Crystals as hard as cubic boron nitride with much higher *thermal stability* ($T_c \sim 1800 \text{ K}$)

Future Works

- Hybrid diamond composites with nanocrystals and nano-/amorphous matrix
- Reduce *P-T* synthesis/sintering conditions by systematic selection of catalysts
- EDM'able (*Electric Discharge Machining-able*) products to make desired shapes
- Nanotube-reinforcements to greatly enhance the fracture toughness
- Materials HARDER than diamonds !!!